Vol. 29 No. 1 2023

FINITE GROUPS WITH ABSOLUTELY \mathfrak{F} -SUBNORMAL MAXIMAL SUBGROUPS 1

I. L. Sokhor

A subgroup M of a group G is an n-maximal subgroups of G if there is a subgroup chain $M=M_n\leq M_{n-1}\leq\ldots\leq M_1\leq M_0=G$ such that M_{i+1} is a maximal subgroup of M_i . We establish a criterion for a group with absolutely \mathfrak{F} -subnormal n-maximal subgroups to belong to a subgroup-closed saturated formation \mathfrak{F} containing all nilpotent groups.

Keywords: finite group, maximal subgroup, subnormal subgroup.

И. Л. Сохор. Конечные группы с абсолютно \mathfrak{F} -субнормальными максимальными подгруппами.

Подгруппа M группы G является n-максимальной подгруппой в группе G, если существует цепочка подгрупп $M=M_n\leq M_{n-1}\leq\ldots\leq M_1\leq M_0=G$ такая, что M_{i+1} — максимальная подгруппа в M_i . Для группы с абсолютно \mathfrak{F} -субнормальными n-максимальными подгруппами установлен критерий принадлежности наследственной насыщенной формации \mathfrak{F} , содержащей все нильпотентные группы.

Ключевые слова: конечная группа, максимальная подгруппа, субнормальная подгруппа.

MSC: 20D10; 20E28

DOI: 10.21538/0134-4889-2023-29-1-254-258

Introduction

All groups in this paper are finite.

The structure of a group depends in large measure on the properties of its maximal subgroups, in particular, the manner of embedding a maximal subgroup into the group. Remind that a proper subgroup M of a group G is called maximal in G if whenever $M \leq H \leq G$ we have M = H or H = G. A subgroup M is an n-maximal subgroup of a group G if there is a subgroup chain

$$M = M_n < M_{n-1} < \ldots < M_1 < M_0 = G$$

such that M_{i+1} is a maximal subgroup of M_i for every i.

Huppert [1] proved that a group with all 2-maximal subgroups normal is supersolvable and a group with all 3-maximal subgroups normal is a solvable group of rank at most 2. Janko [2] described groups in which 4-maximal subgroups are normal. Mann [3] investigated groups with all n-maximal subgroups subnormal for arbitrary n.

The concept of formational subnormality is a generalization of the concept of subnormality. Let \mathfrak{F} be a formation. A subgroup H of a group G is \mathfrak{F} -subnormal in G if H=G or there is a subgroup chain

$$H = H_0 \lessdot H_1 \lessdot \ldots \lessdot H_n = G$$

such that $H_i/H_{i-1H_i} \in \mathfrak{F}$ for every i (or, equivalently, $H_i^{\mathfrak{F}} \leq H_{i-1H_i}$). Here we write $H \lessdot G$ if H is a maximal subgroup of G and we denote by $H_G = \bigcap_{g \in G} H^g$ the core of H in G. A subgroup H

¹This work was supported by the Ministry of Education of the Republic of Belarus (Grant number 20211467).

of a group G is called absolutely \mathfrak{F} -subnormal in G if any subgroup L containing H is \mathfrak{F} -subnormal in G [4]. It is clear that any \mathfrak{F} -subnormal maximal subgroup is absolutely \mathfrak{F} -subnormal.

If \mathfrak{F} is a formation containing all nilpotent groups, then every subnormal subgroup of a solvable group is \mathfrak{F} -subnormal, in particular, \mathfrak{N} -subnormal (see Lemma 3). Here \mathfrak{N} is the formation of all nilpotent groups. In [5], the structure of a group with \mathfrak{F} -subnormal 2-maximal subgroups was established for a lattice formation \mathfrak{F} . Groups with \mathfrak{F} -subnormal n-maximal subgroups with additional restrictions on the number of prime divisors of the group order were studied in [6;7].

Thus, it is natural to study a group in which n-maximal subgroups are absolutely \mathfrak{F} -subnormal. In this paper, we establish a criterion for a group with absolutely \mathfrak{F} -subnormal n-maximal subgroups to belong to a subgroup-closed saturated formation \mathfrak{F} containing all nilpotent groups.

1. Preliminaries

Let $G \neq 1$ be a group. Then there is an unrefinable subgroup chain

$$1 = M_k \lessdot M_{k-1} \lessdot \ldots \lessdot M_1 \lessdot M_0 = G.$$

The number of subgroups in this chain is called its length. The length l(G) of a group G is the maximal length of an unrefinable chain. The depth $\lambda(G)$ of G is the minimal length of an unrefinable chain.

Lemma 1. Let G be a group. If $\lambda(G) = 1$, then G is a group of prime order.

Proof. Since $\lambda(G) = 1$, then $1 \leq G$, and so G is a group of prime order. Lemma is proved.

Lemma 2. Let G be a group. If $\lambda(G) = 2$, then $|\pi(G)| \leq 2$ and one of the following statements holds.

- (1) G is a group of prime power order.
- (2) $G = C_p \times C_q$ for some primes p and q with $p \neq q$.
- (3) G is a non-nilpotent group and every proper subgroup of G is a group of prime power order.

Proof. Since $\lambda(G) = 2$, there is a subgroup chain

$$1 \lessdot M \lessdot G$$
.

Therefore, |M| = q is prime and G is solvable by [8, IV.7.4]. A maximal subgroup of a solvable group has a prime power index. Therefore, we consider the following cases.

- (1) $q \in \pi(|G:M|)$. Then $|G| = q^{\alpha}$ and G is a group of prime power order.
- (2) $q \notin \pi(|G:M|)$. Then $|G| = p^{\alpha}q$ for a prime $p \in \pi(G)$ and $p \neq q$. If M is normal in G, then |G:M| = p, |G| = pq and $G = C_q \rtimes C_p$. If, in addition, p < q, then $G = C_p \times C_q$. Let M be not normal in G. Then $M = N_G(M)$ is a Sylow q-subgroup of G, and according to [8, IV.2.6], there is a q'-Hall subgroup N such that $G = N \rtimes M$. Since M is a maximal subgroup of G, we conclude that N is a minimal normal subgroup of G. Consequently, N is an elementary abelian p-group because G is solvable. Suppose that there is a proper subgroup H of G such that $|\pi(H)| = 2$. It follows that $M \leq H < G$ and M = H, but $|\pi(M)| = 1$, a contradiction. Thus, every proper subgroup of G has a prime power order.

Lemma is proved.

Note that groups with $\lambda(G) = 3$ or $\lambda(G) = 4$ were described in [9].

Lemma 3. Let \mathfrak{F} be a formation containing all nilpotent groups. Every subnormal subgroup of a solvable group G is \mathfrak{F} -subnormal in G.

256 I. L. Sokhor

Proof. Let H be a subnormal subgroup of G. There is a composition series

$$1 \lessdot \ldots \lessdot H = H_0 \lessdot H_1 \lessdot \ldots \lessdot H_n = G.$$

Since G is solvable, we have $|H_{i+1}: H_i|$ is prime for every i. Therefore, $H_{i+1}/H_i \in \mathfrak{N} \subseteq \mathfrak{F}$ for every i and H is \mathfrak{F} -subnormal in G.

Lemma is proved.

Lemma 4. Let \mathfrak{F} be a subgroup-closed formation. If $G \in \mathfrak{F}$, then every subgroup of G is absolutely \mathfrak{F} -subnormal.

Proof. Let H be a subgroup of a group $G \in \mathfrak{F}$. There is subgroup chain

$$H = H_0 \lessdot H_1 \lessdot \ldots \lessdot H_n = G.$$

Since \mathfrak{F} is a subgroup-closed formation and $G \in \mathfrak{F}$, we deduce $H_i \in \mathfrak{F}$ and $H_{i+1}/(H_i)_{H_{i+1}} \in \mathfrak{F}$ for every i. Consequently, H is \mathfrak{F} -subnormal in G. Thus, every subgroup of G is \mathfrak{F} -subnormal in G. Therefore every subgroup containing H is \mathfrak{F} -subnormal in G and G is absolutely G-subnormal in G. Lemma is proved.

2. The main result

Lemma 5. Let \mathfrak{F} be a formation and let G be a simple group. If G contains an \mathfrak{F} -subnormal subgroup, then $G \in \mathfrak{F}$.

Proof. Let H be an \mathfrak{F} -subnormal subgroup of a simple group G. In that case there is a subgroup chain

$$H = H_0 \lessdot H_1 \lessdot \ldots \lessdot H_{n-1} = M \lessdot H_n = G$$

such that H_i/H_{i-1} $H_i \in \mathfrak{F}$ for every i. In particular, $G/M_G \cong G \in \mathfrak{F}$ in view of G is a simple group. Lemma is proved.

Theorem 1. Let \mathfrak{F} be a subgroup-closed saturated formation containing all nilpotent groups and let G be a group with all n-maximal subgroups absolutely \mathfrak{F} -subnormal. The following statements hold.

- (1) If $n \leq 2$, then $G \in \mathfrak{F}$.
- (2) If $3 \le n \le 4$, then either $G \in \mathfrak{F}$ or G is a solvable group of chief length is no more than n-1.
- (3) If $n \geq 5$, then either $G \in \mathfrak{F}$ or G is a solvable group of chief length is no more than n-1 or G is an unsolvable group with $3 \leq \lambda(G) \leq n-1$.

Proof. Let n = 1. Since every maximal subgroup of G is absolutely \mathfrak{F} -subnormal in G, every maximal subgroup of G is \mathfrak{F} -subnormal in G. Therefore $G \in \mathfrak{F}$ by [10, Lemma 4].

Let n=2 and let M be a maximal subgroup of G. If M=1, then |G| is prime and $G \in \mathfrak{N} \subseteq \mathfrak{F}$. Assume that $M \neq 1$. In that case there is a subgroup chain

$$K \lessdot M \lessdot G$$
.

Since K is a 2-maximal subgroup of G, we deduce that K is absolutely \mathfrak{F} -subnormal in G by the choice of G. Hence M is \mathfrak{F} -subnormal in G and $G \in \mathfrak{F}$ according to [10, Lemma 4].

Let n > 2 and $G \notin \mathfrak{F}$. If $\lambda(G) = 1$, then by Lemma 1, $G \in \mathfrak{F}$, a contradiction. Hence $\lambda(G) \geq 2$. Suppose that $\lambda(G) \geq n$. In that case for every maximal subgroup M of G, there is a subgroup chain

$$M_n \lessdot \ldots \lessdot M_1 = M \lessdot G_0 = G.$$

Since M_n is an n-maximal subgroup of G, we get M_n is absolutely \mathfrak{F} -subnormal in G by the choice of G. Hence M is \mathfrak{F} -subnormal in G and $G \in \mathfrak{F}$ by [10, Lemma 4], a contradiction. Consequently, $\lambda(G) \leq n-1$.

Let n = 3. Then $\lambda(G) = 2$ by the above. In view of Lemma 2, we obtain that G is solvable. Consequently, the length of a chief series of G is equal to 2 since the depth of a solvable group is equal to the length of its chief series by [11, Theorem 2].

Let n=4. Then $2 \leq \lambda(G) \leq 3$ by the above. If $\lambda(G)=2$, then according to Lemma 2, G is solvable, and the chief length of G is equal to 2 by [11, Theorem 2]. Let $\lambda(G)=3$. If G is solvable, then the chief length of G is equal to 3 by [11, Theorem 2]. Let G be unsolvable. If $l(G)=\lambda(G)=3$, then G is supersolvable in view of [12], a contradiction. Hence l(G)>3 and G contains a 4-maximal subgroup that is absolutely \mathfrak{F} -subnormal in G. By [9, Theorem 1], G is simple. Consequently, $G \in \mathfrak{F}$ by Lemma 5, a contradiction.

Let $n \geq 5$. By the above, $2 \leq \lambda(G) \leq n-1$. If G is solvable, then the chief length of G is no more than n-1 by [11, Theorem 2]. Assume that G is unsolvable. If $\lambda(G) = 2$, then G is solvable according to Lemma 2, a contradiction. Therefore we have $3 \leq \lambda(G) \leq n-1$.

Theorem is proved.

Corollary 1. Let \mathfrak{F} be a subgroup-closed saturated formation containing all nilpotent groups. If G is an unsolvable group with all n-maximal subgroups absolutely \mathfrak{F} -subnormal $(n \leq 4)$, then $G \in \mathfrak{F}$.

Proof. If $n \leq 2$, then $G \in \mathfrak{F}$ by Theorem 1. Let $2 < n \leq 4$. Assume that $G \notin \mathfrak{F}$. According to Theorem 1, G is a solvable group, a contradiction.

Corollary is proved.

Corollary 2. Let \mathfrak{F} be a subgroup-closed saturated formation containing all nilpotent groups. Every 3-maximal subgroup of a group G is absolutely \mathfrak{F} -subnormal if and only if either $G \in \mathfrak{F}$ or every primary cyclic subgroup of G is absolutely \mathfrak{F} -subnormal or self-normalizing.

Proof. Assume that every 3-maximal subgroup of a group G is absolutely \mathfrak{F} -subnormal in G. By Theorem 1, either $G \in \mathfrak{F}$, or G is a solvable group of chief length 2. Let $G \notin \mathfrak{F}$. Since G is solvable, we deduce that $\lambda(G) = 2$ by [11, Theorem 2]. Hence G is a non-nilpotent group in which every proper subgroup is of prime power order in view of Lemma 2. Consequently, every primary cyclic subgroup of G is absolutely \mathfrak{F} -subnormal or self-normalizing by [10, Theorem 2].

Conversely, if $G \in \mathfrak{F}$, then by Lemma 4, every subgroup of G is absolutely \mathfrak{F} -subnormal in G. Assume that $G \notin \mathfrak{F}$ and every primary cyclic subgroup of G is absolutely \mathfrak{F} -subnormal or self-normalizing. According to [10, Theorem 2], G is a non-nilpotent group in which every proper subgroup is of prime power order. By [13], we get $G = P \rtimes \langle x \rangle$, where P is an elementary abelian Sylow p-group for a prime $p \in \pi(G)$, $\langle x \rangle$ is a non-normal Sylow subgroup of order q for a prime $q \in \pi(G)$, $p \neq q$ and $\langle x \rangle$ acts irreducibly on P. In that case, every 3-maximal subgroup K is contained in P. Hence K and every subgroup H of G containing K are subnormal in G. Since G is solvable, K as well as every subgroup containing K is \mathfrak{F} -subnormal in G by Lemma 3, and so, K is absolutely \mathfrak{F} -subnormal in G.

Corollary is proved.

REFERENCES

- 1. Huppert B. Normalteiler and maximal Untergruppen endlicher Gruppen. Math.~Z.,~1954,~vol.~60,~pp.~409–434.~doi: <math>10.1007/BF01187387
- 2. Janko Z. Finite groups with invariant fourth maximal subgroups. *Math. Z.*, 1963, vol. 82, pp. 82–89. doi: 10.1007/BF01112825
- 3. Mann A. Finite groups whose *n*-maximal subgroups are subnormal. *Trans. Amer. Math. Soc.*, 1968, vol. 132, pp. 395–409.

258 I. L. Sokhor

- 4. Vasil'ev A. F., Melchenko A. G. Finite groups with absolutely formationally subnormal Sylow subgroups. *Probl. Fiz. Math. Tekh.*, 2019, vol. 4, no. 41, pp. 44–50 (in Russian).
- Konovalova M.N., Monakhov V.S., Sokhor I.L. Finite groups with formational subnormal strictly 2-maximal subgroups. Comm. Algebra, 2022, vol. 50, no. 4, pp. 1606–1612. doi: 10.1080/00927872.2021.1986058
- 6. Kovaleva V.A., Skiba A.N. Finite solvable groups with all n-maximal subgroups \mathfrak{F} -subnormal. J. Group Theory, 2014, vol. 17, no. 3, pp. 273–290. doi: 10.1515/jgt-2013-0047
- 7. Kovaleva V.A., Yi X. Finite biprimary groups with all 3-maximal subgroups \mathfrak{U} -subnormal. *Acta Math. Hung.*, 2015, vol. 146, no. 1, pp. 47–55. doi: 10.1007/s10474-015-0498-5
- 8. Huppert B. Endliche Gruppen I. Berlin: Springer-Verl., 1967. 793 p. doi: 10.1007/978-3-642-64981-3
- 9. Burness T.C., Liebeck M.W., Shalev A. On the length and depth of finite groups. *Proc. London Math. Soc.*, 2019, vol. 119, no. 3, pp. 1464–1492. doi: 10.1112/plms.12273
- 10. Sokhor I.L. Continuation of the theory of $E_{\mathfrak{F}}$ -groups. Trudy Inst. Mat. i Mekh. UrO RAN, 2021, vol. 27, no. 1, pp. 268–272. doi: 10.21538/0134-4889-2021-27-1-268-272
- 11. Kohler J. A note on solvable groups. J. Lond. Math. Soc., 1968, vol. 43, pp. 235–236
- 12. Iwasawa K. Über die endlichen Gruppen und die Verbände ihrer Untergruppen. J. Fac. Sci. Imp. Univ. Tokyo. Sect. I., 1941, vol. 4, pp. 171–199.
- 13. Monakhov V.S. Schmidt subgroups, their existence and some applications. *Proceedings of Ukrainian Mathematical Congress*–2001. Inst. Mat. NAN Ukrainy, Kyiv, 2002, pp. 81–90 (in Russian).

Received November 9, 2022 Revised January 20, 2023 Accepted January 30, 2023

Funding Agency: This work was supported by the Ministry of Education of the Republic of Belarus (Grant number 20211467).

Irina Leonidovna Sokhor, Can. Sci. (Phys.-Math.), Francisk Skorina Gomel State University, 246019 Gomel, Belarus, e-mail: irina.sokhor@gmail.com.

Cite this article as: I. L. Sokhor. Finite groups with absolutely \mathfrak{F} -subnormal maximal subgroups, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 1, pp. 254–258.